|
|||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use Pair | |
---|---|
org.apache.crunch | Client-facing API and core abstractions. |
org.apache.crunch.contrib.bloomfilter | Support for creating Bloom Filters. |
org.apache.crunch.contrib.text | |
org.apache.crunch.fn | Commonly used functions for manipulating collections. |
org.apache.crunch.impl.dist.collect | |
org.apache.crunch.impl.mem | In-memory Pipeline implementation for rapid prototyping and testing. |
org.apache.crunch.impl.spark | |
org.apache.crunch.impl.spark.collect | |
org.apache.crunch.impl.spark.fn | |
org.apache.crunch.lib | Joining, sorting, aggregating, and other commonly used functionality. |
org.apache.crunch.lib.join | Inner and outer joins on collections. |
org.apache.crunch.types | Common functionality for business object serialization. |
org.apache.crunch.types.avro | Business object serialization using Apache Avro. |
org.apache.crunch.types.writable | Business object serialization using Hadoop's Writables framework. |
org.apache.crunch.util | An assorted set of utilities. |
Uses of Pair in org.apache.crunch |
---|
Methods in org.apache.crunch that return Pair | ||
---|---|---|
static
|
Pair.of(T first,
U second)
|
Methods in org.apache.crunch that return types with arguments of type Pair | ||
---|---|---|
|
PTable.cogroup(PTable<K,U> other)
Co-group operation with the given table on common keys. |
|
|
PTable.join(PTable<K,U> other)
Perform an inner join on this table and the one passed in as an argument on their common keys. |
Methods in org.apache.crunch with parameters of type Pair | |
---|---|
int |
Pair.compareTo(Pair<K,V> o)
|
Method parameters in org.apache.crunch with type arguments of type Pair | ||
---|---|---|
PTable<K,V> |
PTable.filter(FilterFn<Pair<K,V>> filterFn)
Apply the given filter function to this instance and return the resulting PTable . |
|
PTable<K,V> |
PTable.filter(String name,
FilterFn<Pair<K,V>> filterFn)
Apply the given filter function to this instance and return the resulting PTable . |
|
|
PCollection.parallelDo(DoFn<S,Pair<K,V>> doFn,
PTableType<K,V> type)
Similar to the other parallelDo instance, but returns a
PTable instance instead of a PCollection . |
|
|
PCollection.parallelDo(String name,
DoFn<S,Pair<K,V>> doFn,
PTableType<K,V> type)
Similar to the other parallelDo instance, but returns a
PTable instance instead of a PCollection . |
|
|
PCollection.parallelDo(String name,
DoFn<S,Pair<K,V>> doFn,
PTableType<K,V> type,
ParallelDoOptions options)
Similar to the other parallelDo instance, but returns a
PTable instance instead of a PCollection . |
Uses of Pair in org.apache.crunch.contrib.bloomfilter |
---|
Method parameters in org.apache.crunch.contrib.bloomfilter with type arguments of type Pair | |
---|---|
void |
BloomFilterFn.cleanup(Emitter<Pair<String,org.apache.hadoop.util.bloom.BloomFilter>> emitter)
|
void |
BloomFilterFn.process(S input,
Emitter<Pair<String,org.apache.hadoop.util.bloom.BloomFilter>> emitter)
|
Uses of Pair in org.apache.crunch.contrib.text |
---|
Methods in org.apache.crunch.contrib.text that return types with arguments of type Pair | ||
---|---|---|
static
|
Extractors.xpair(TokenizerFactory scannerFactory,
Extractor<K> one,
Extractor<V> two)
Returns an Extractor for pairs of the given types that uses the given TokenizerFactory
for parsing the sub-fields. |
Method parameters in org.apache.crunch.contrib.text with type arguments of type Pair | ||
---|---|---|
static
|
Parse.parseTable(String groupName,
PCollection<String> input,
Extractor<Pair<K,V>> extractor)
Parses the lines of the input PCollection<String> and returns a PTable<K, V> using
the given Extractor<Pair<K, V>> . |
|
static
|
Parse.parseTable(String groupName,
PCollection<String> input,
PTypeFamily ptf,
Extractor<Pair<K,V>> extractor)
Parses the lines of the input PCollection<String> and returns a PTable<K, V> using
the given Extractor<Pair<K, V>> that uses the given PTypeFamily . |
Uses of Pair in org.apache.crunch.fn |
---|
Methods in org.apache.crunch.fn that return Pair | |
---|---|
Pair<S,T> |
PairMapFn.map(Pair<K,V> input)
|
Pair<K,V> |
ExtractKeyFn.map(V input)
|
Methods in org.apache.crunch.fn that return types with arguments of type Pair | ||
---|---|---|
static
|
Aggregators.pairAggregator(Aggregator<V1> a1,
Aggregator<V2> a2)
Apply separate aggregators to each component of a Pair . |
Methods in org.apache.crunch.fn with parameters of type Pair | |
---|---|
Pair<S,T> |
PairMapFn.map(Pair<K,V> input)
|
Method parameters in org.apache.crunch.fn with type arguments of type Pair | |
---|---|
void |
PairMapFn.cleanup(Emitter<Pair<S,T>> emitter)
|
Uses of Pair in org.apache.crunch.impl.dist.collect |
---|
Methods in org.apache.crunch.impl.dist.collect that return types with arguments of type Pair | ||
---|---|---|
|
PTableBase.cogroup(PTable<K,U> other)
|
|
PType<Pair<K,V>> |
EmptyPTable.getPType()
|
|
PType<Pair<K,V>> |
BaseUnionTable.getPType()
|
|
PType<Pair<K,V>> |
BaseInputTable.getPType()
|
|
PType<Pair<K,Iterable<V>>> |
BaseGroupedTable.getPType()
|
|
PType<Pair<K,V>> |
BaseDoTable.getPType()
|
|
|
PTableBase.join(PTable<K,U> other)
|
Method parameters in org.apache.crunch.impl.dist.collect with type arguments of type Pair | ||
---|---|---|
|
PCollectionFactory.createDoTable(String name,
PCollectionImpl<S> chainingCollection,
CombineFn<K,V> combineFn,
DoFn<S,Pair<K,V>> fn,
PTableType<K,V> type)
|
|
|
PCollectionFactory.createDoTable(String name,
PCollectionImpl<S> chainingCollection,
DoFn<S,Pair<K,V>> fn,
PTableType<K,V> type,
ParallelDoOptions options)
|
|
PTable<K,V> |
PTableBase.filter(FilterFn<Pair<K,V>> filterFn)
|
|
PTable<K,V> |
PTableBase.filter(String name,
FilterFn<Pair<K,V>> filterFn)
|
|
|
PCollectionImpl.parallelDo(DoFn<S,Pair<K,V>> fn,
PTableType<K,V> type)
|
|
|
PCollectionImpl.parallelDo(String name,
DoFn<S,Pair<K,V>> fn,
PTableType<K,V> type)
|
|
|
PCollectionImpl.parallelDo(String name,
DoFn<S,Pair<K,V>> fn,
PTableType<K,V> type,
ParallelDoOptions options)
|
Uses of Pair in org.apache.crunch.impl.mem |
---|
Method parameters in org.apache.crunch.impl.mem with type arguments of type Pair | ||
---|---|---|
static
|
MemPipeline.tableOf(Iterable<Pair<S,T>> pairs)
|
|
static
|
MemPipeline.typedTableOf(PTableType<S,T> ptype,
Iterable<Pair<S,T>> pairs)
|
Uses of Pair in org.apache.crunch.impl.spark |
---|
Methods in org.apache.crunch.impl.spark that return types with arguments of type Pair | ||
---|---|---|
static
|
GuavaUtils.pair2tupleFunc()
|
|
static
|
GuavaUtils.tuple2PairFunc()
|
Uses of Pair in org.apache.crunch.impl.spark.collect |
---|
Method parameters in org.apache.crunch.impl.spark.collect with type arguments of type Pair | ||
---|---|---|
|
SparkCollectFactory.createDoTable(String name,
PCollectionImpl<S> parent,
CombineFn<K,V> combineFn,
DoFn<S,Pair<K,V>> fn,
PTableType<K,V> type)
|
|
|
SparkCollectFactory.createDoTable(String name,
PCollectionImpl<S> parent,
DoFn<S,Pair<K,V>> fn,
PTableType<K,V> type,
ParallelDoOptions options)
|
Uses of Pair in org.apache.crunch.impl.spark.fn |
---|
Methods in org.apache.crunch.impl.spark.fn that return Pair | |
---|---|
Pair<K,List<V>> |
ReduceInputFunction.call(scala.Tuple2<ByteArray,List<byte[]>> kv)
|
Methods in org.apache.crunch.impl.spark.fn with parameters of type Pair | |
---|---|
scala.Tuple2<S,Iterable<T>> |
PairMapIterableFunction.call(Pair<K,List<V>> input)
|
scala.Tuple2<IntByteArray,byte[]> |
PartitionedMapOutputFunction.call(Pair<K,V> p)
|
scala.Tuple2<ByteArray,byte[]> |
MapOutputFunction.call(Pair<K,V> p)
|
Constructor parameters in org.apache.crunch.impl.spark.fn with type arguments of type Pair | |
---|---|
FlatMapPairDoFn(DoFn<Pair<K,V>,T> fn,
SparkRuntimeContext ctxt)
|
|
PairFlatMapDoFn(DoFn<T,Pair<K,V>> fn,
SparkRuntimeContext ctxt)
|
|
PairFlatMapPairDoFn(DoFn<Pair<K,V>,Pair<K2,V2>> fn,
SparkRuntimeContext ctxt)
|
|
PairFlatMapPairDoFn(DoFn<Pair<K,V>,Pair<K2,V2>> fn,
SparkRuntimeContext ctxt)
|
|
PairMapFunction(MapFn<Pair<K,V>,S> fn,
SparkRuntimeContext ctxt)
|
|
PairMapIterableFunction(MapFn<Pair<K,List<V>>,Pair<S,Iterable<T>>> fn,
SparkRuntimeContext runtimeContext)
|
|
PairMapIterableFunction(MapFn<Pair<K,List<V>>,Pair<S,Iterable<T>>> fn,
SparkRuntimeContext runtimeContext)
|
Uses of Pair in org.apache.crunch.lib |
---|
Methods in org.apache.crunch.lib that return Pair | ||
---|---|---|
static
|
PTables.getDetachedValue(PTableType<K,V> tableType,
Pair<K,V> value)
Create a detached value for a table Pair . |
|
static
|
PTables.getGroupedDetachedValue(PGroupedTableType<K,V> groupedTableType,
Pair<K,Iterable<V>> value)
Created a detached value for a PGroupedTable value. |
|
static
|
Channels.split(PCollection<Pair<T,U>> pCollection)
Splits a PCollection of any Pair of objects into a Pair of
PCollection}, to allow for the output of a DoFn to be handled using
separate channels. |
|
static
|
Channels.split(PCollection<Pair<T,U>> pCollection,
PType<T> firstPType,
PType<U> secondPType)
Splits a PCollection of any Pair of objects into a Pair of
PCollection}, to allow for the output of a DoFn to be handled using
separate channels. |
Methods in org.apache.crunch.lib that return types with arguments of type Pair | ||
---|---|---|
static
|
Cogroup.cogroup(int numReducers,
PTable<K,U> left,
PTable<K,V> right)
Co-groups the two PTable arguments with a user-specified degree of parallelism (a.k.a, number of
reducers.) |
|
static
|
Cogroup.cogroup(PTable<K,U> left,
PTable<K,V> right)
Co-groups the two PTable arguments. |
|
static
|
Cartesian.cross(PCollection<U> left,
PCollection<V> right)
Performs a full cross join on the specified PCollection s (using the
same strategy as Pig's CROSS operator). |
|
static
|
Cartesian.cross(PCollection<U> left,
PCollection<V> right,
int parallelism)
Performs a full cross join on the specified PCollection s (using the
same strategy as Pig's CROSS operator). |
|
static
|
Cartesian.cross(PTable<K1,U> left,
PTable<K2,V> right)
Performs a full cross join on the specified PTable s (using the same
strategy as Pig's CROSS operator). |
|
static
|
Cartesian.cross(PTable<K1,U> left,
PTable<K2,V> right)
Performs a full cross join on the specified PTable s (using the same
strategy as Pig's CROSS operator). |
|
static
|
Cartesian.cross(PTable<K1,U> left,
PTable<K2,V> right,
int parallelism)
Performs a full cross join on the specified PTable s (using the same
strategy as Pig's CROSS operator). |
|
static
|
Cartesian.cross(PTable<K1,U> left,
PTable<K2,V> right,
int parallelism)
Performs a full cross join on the specified PTable s (using the same
strategy as Pig's CROSS operator). |
|
static
|
Join.fullJoin(PTable<K,U> left,
PTable<K,V> right)
Performs a full outer join on the specified PTable s. |
|
static
|
Sample.groupedWeightedReservoirSample(PTable<Integer,Pair<T,N>> input,
int[] sampleSizes)
The most general purpose of the weighted reservoir sampling patterns that allows us to choose a random sample of elements for each of N input groups. |
|
static
|
Sample.groupedWeightedReservoirSample(PTable<Integer,Pair<T,N>> input,
int[] sampleSizes,
Long seed)
Same as the other groupedWeightedReservoirSample method, but include a seed for testing purposes. |
|
static
|
Join.innerJoin(PTable<K,U> left,
PTable<K,V> right)
Performs an inner join on the specified PTable s. |
|
static
|
Join.join(PTable<K,U> left,
PTable<K,V> right)
Performs an inner join on the specified PTable s. |
|
static
|
Join.leftJoin(PTable<K,U> left,
PTable<K,V> right)
Performs a left outer join on the specified PTable s. |
|
static
|
Join.rightJoin(PTable<K,U> left,
PTable<K,V> right)
Performs a right outer join on the specified PTable s. |
|
static
|
Sort.sortPairs(PCollection<Pair<U,V>> collection,
Sort.ColumnOrder... columnOrders)
Sorts the PCollection of Pair s using the specified column
ordering. |
Methods in org.apache.crunch.lib with parameters of type Pair | ||
---|---|---|
int |
Aggregate.PairValueComparator.compare(Pair<K,V> left,
Pair<K,V> right)
|
|
int |
Aggregate.PairValueComparator.compare(Pair<K,V> left,
Pair<K,V> right)
|
|
static
|
PTables.getDetachedValue(PTableType<K,V> tableType,
Pair<K,V> value)
Create a detached value for a table Pair . |
|
static
|
PTables.getGroupedDetachedValue(PGroupedTableType<K,V> groupedTableType,
Pair<K,Iterable<V>> value)
Created a detached value for a PGroupedTable value. |
|
void |
Aggregate.TopKCombineFn.process(Pair<Integer,Iterable<Pair<K,V>>> input,
Emitter<Pair<Integer,Pair<K,V>>> emitter)
|
|
void |
Aggregate.TopKFn.process(Pair<K,V> input,
Emitter<Pair<Integer,Pair<K,V>>> emitter)
|
Method parameters in org.apache.crunch.lib with type arguments of type Pair | ||
---|---|---|
static
|
PTables.asPTable(PCollection<Pair<K,V>> pcollect)
Convert the given PCollection<Pair<K, V>> to a PTable<K, V> . |
|
void |
Aggregate.TopKFn.cleanup(Emitter<Pair<Integer,Pair<K,V>>> emitter)
|
|
void |
Aggregate.TopKFn.cleanup(Emitter<Pair<Integer,Pair<K,V>>> emitter)
|
|
static
|
Sample.groupedWeightedReservoirSample(PTable<Integer,Pair<T,N>> input,
int[] sampleSizes)
The most general purpose of the weighted reservoir sampling patterns that allows us to choose a random sample of elements for each of N input groups. |
|
static
|
Sample.groupedWeightedReservoirSample(PTable<Integer,Pair<T,N>> input,
int[] sampleSizes,
Long seed)
Same as the other groupedWeightedReservoirSample method, but include a seed for testing purposes. |
|
void |
Aggregate.TopKCombineFn.process(Pair<Integer,Iterable<Pair<K,V>>> input,
Emitter<Pair<Integer,Pair<K,V>>> emitter)
|
|
void |
Aggregate.TopKCombineFn.process(Pair<Integer,Iterable<Pair<K,V>>> input,
Emitter<Pair<Integer,Pair<K,V>>> emitter)
|
|
void |
Aggregate.TopKCombineFn.process(Pair<Integer,Iterable<Pair<K,V>>> input,
Emitter<Pair<Integer,Pair<K,V>>> emitter)
|
|
void |
Aggregate.TopKFn.process(Pair<K,V> input,
Emitter<Pair<Integer,Pair<K,V>>> emitter)
|
|
void |
Aggregate.TopKFn.process(Pair<K,V> input,
Emitter<Pair<Integer,Pair<K,V>>> emitter)
|
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,Pair<U,V>> doFn,
PTableType<U,V> ptype)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PTable<U, V> . |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,Pair<U,V>> doFn,
PTableType<U,V> ptype)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PTable<U, V> . |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,Pair<U,V>> doFn,
PTableType<U,V> ptype)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PTable<U, V> . |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,Pair<U,V>> doFn,
PTableType<U,V> ptype)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PTable<U, V> . |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,Pair<U,V>> doFn,
PTableType<U,V> ptype,
int numReducers)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PTable<U, V> , using
the given number of reducers. |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,Pair<U,V>> doFn,
PTableType<U,V> ptype,
int numReducers)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PTable<U, V> , using
the given number of reducers. |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,Pair<U,V>> doFn,
PTableType<U,V> ptype,
int numReducers)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PTable<U, V> , using
the given number of reducers. |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,Pair<U,V>> doFn,
PTableType<U,V> ptype,
int numReducers)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PTable<U, V> , using
the given number of reducers. |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,T> doFn,
PType<T> ptype)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PCollection<T> . |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,T> doFn,
PType<T> ptype)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PCollection<T> . |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,T> doFn,
PType<T> ptype)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PCollection<T> . |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,T> doFn,
PType<T> ptype,
int numReducers)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PCollection<T> , using
the given number of reducers. |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,T> doFn,
PType<T> ptype,
int numReducers)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PCollection<T> , using
the given number of reducers. |
|
static
|
SecondarySort.sortAndApply(PTable<K,Pair<V1,V2>> input,
DoFn<Pair<K,Iterable<Pair<V1,V2>>>,T> doFn,
PType<T> ptype,
int numReducers)
Perform a secondary sort on the given PTable instance and then apply a
DoFn to the resulting sorted data to yield an output PCollection<T> , using
the given number of reducers. |
|
static
|
Sort.sortPairs(PCollection<Pair<U,V>> collection,
Sort.ColumnOrder... columnOrders)
Sorts the PCollection of Pair s using the specified column
ordering. |
|
static
|
Channels.split(PCollection<Pair<T,U>> pCollection)
Splits a PCollection of any Pair of objects into a Pair of
PCollection}, to allow for the output of a DoFn to be handled using
separate channels. |
|
static
|
Channels.split(PCollection<Pair<T,U>> pCollection,
PType<T> firstPType,
PType<U> secondPType)
Splits a PCollection of any Pair of objects into a Pair of
PCollection}, to allow for the output of a DoFn to be handled using
separate channels. |
|
static
|
Sample.weightedReservoirSample(PCollection<Pair<T,N>> input,
int sampleSize)
Selects a weighted sample of the elements of the given PCollection , where the second term in
the input Pair is a numerical weight. |
|
static
|
Sample.weightedReservoirSample(PCollection<Pair<T,N>> input,
int sampleSize,
Long seed)
The weighted reservoir sampling function with the seed term exposed for testing purposes. |
Constructor parameters in org.apache.crunch.lib with type arguments of type Pair | |
---|---|
Aggregate.TopKCombineFn(int limit,
boolean maximize,
PType<Pair<K,V>> pairType)
|
|
Aggregate.TopKFn(int limit,
boolean ascending,
PType<Pair<K,V>> pairType)
|
Uses of Pair in org.apache.crunch.lib.join |
---|
Methods in org.apache.crunch.lib.join that return types with arguments of type Pair | |
---|---|
PTable<K,Pair<U,V>> |
DefaultJoinStrategy.join(PTable<K,U> left,
PTable<K,V> right,
JoinFn<K,U,V> joinFn)
Perform a default join on the given PTable instances using a user-specified JoinFn . |
PTable<K,Pair<U,V>> |
ShardedJoinStrategy.join(PTable<K,U> left,
PTable<K,V> right,
JoinType joinType)
|
PTable<K,Pair<U,V>> |
MapsideJoinStrategy.join(PTable<K,U> left,
PTable<K,V> right,
JoinType joinType)
|
PTable<K,Pair<U,V>> |
JoinStrategy.join(PTable<K,U> left,
PTable<K,V> right,
JoinType joinType)
Join two tables with the given join type. |
PTable<K,Pair<U,V>> |
DefaultJoinStrategy.join(PTable<K,U> left,
PTable<K,V> right,
JoinType joinType)
|
PTable<K,Pair<U,V>> |
BloomFilterJoinStrategy.join(PTable<K,U> left,
PTable<K,V> right,
JoinType joinType)
|
Methods in org.apache.crunch.lib.join with parameters of type Pair | |
---|---|
void |
JoinFn.process(Pair<Pair<K,Integer>,Iterable<Pair<U,V>>> input,
Emitter<Pair<K,Pair<U,V>>> emitter)
Split up the input record to make coding a bit more manageable. |
Method parameters in org.apache.crunch.lib.join with type arguments of type Pair | ||
---|---|---|
void |
LeftOuterJoinFn.cleanup(Emitter<Pair<K,Pair<U,V>>> emitter)
Called during the cleanup of the MapReduce job this DoFn is
associated with. |
|
void |
LeftOuterJoinFn.cleanup(Emitter<Pair<K,Pair<U,V>>> emitter)
Called during the cleanup of the MapReduce job this DoFn is
associated with. |
|
void |
FullOuterJoinFn.cleanup(Emitter<Pair<K,Pair<U,V>>> emitter)
Called during the cleanup of the MapReduce job this DoFn is
associated with. |
|
void |
FullOuterJoinFn.cleanup(Emitter<Pair<K,Pair<U,V>>> emitter)
Called during the cleanup of the MapReduce job this DoFn is
associated with. |
|
void |
RightOuterJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
void |
RightOuterJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
void |
RightOuterJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
void |
LeftOuterJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
void |
LeftOuterJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
void |
LeftOuterJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
abstract void |
JoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
abstract void |
JoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
abstract void |
JoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
void |
InnerJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
|
|
void |
InnerJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
|
|
void |
InnerJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
|
|
void |
FullOuterJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
void |
FullOuterJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
void |
FullOuterJoinFn.join(K key,
int id,
Iterable<Pair<U,V>> pairs,
Emitter<Pair<K,Pair<U,V>>> emitter)
Performs the actual joining. |
|
static
|
OneToManyJoin.oneToManyJoin(PTable<K,U> left,
PTable<K,V> right,
DoFn<Pair<U,Iterable<V>>,T> postProcessFn,
PType<T> ptype)
Performs a join on two tables, where the left table only contains a single value per key. |
|
static
|
OneToManyJoin.oneToManyJoin(PTable<K,U> left,
PTable<K,V> right,
DoFn<Pair<U,Iterable<V>>,T> postProcessFn,
PType<T> ptype,
int numReducers)
Supports a user-specified number of reducers for the one-to-many join. |
|
void |
JoinFn.process(Pair<Pair<K,Integer>,Iterable<Pair<U,V>>> input,
Emitter<Pair<K,Pair<U,V>>> emitter)
Split up the input record to make coding a bit more manageable. |
|
void |
JoinFn.process(Pair<Pair<K,Integer>,Iterable<Pair<U,V>>> input,
Emitter<Pair<K,Pair<U,V>>> emitter)
Split up the input record to make coding a bit more manageable. |
|
void |
JoinFn.process(Pair<Pair<K,Integer>,Iterable<Pair<U,V>>> input,
Emitter<Pair<K,Pair<U,V>>> emitter)
Split up the input record to make coding a bit more manageable. |
|
void |
JoinFn.process(Pair<Pair<K,Integer>,Iterable<Pair<U,V>>> input,
Emitter<Pair<K,Pair<U,V>>> emitter)
Split up the input record to make coding a bit more manageable. |
Uses of Pair in org.apache.crunch.types |
---|
Fields in org.apache.crunch.types with type parameters of type Pair | |
---|---|
static TupleFactory<Pair> |
TupleFactory.PAIR
|
Methods in org.apache.crunch.types that return Pair | |
---|---|
Pair<K,Iterable<V>> |
PGroupedTableType.PairIterableMapFn.map(Pair<Object,Iterable<Object>> input)
|
Methods in org.apache.crunch.types that return types with arguments of type Pair | ||
---|---|---|
ReadableSourceTarget<Pair<K,Iterable<V>>> |
PGroupedTableType.getDefaultFileSource(org.apache.hadoop.fs.Path path)
|
|
|
PTypeFamily.pairs(PType<V1> p1,
PType<V2> p2)
|
Methods in org.apache.crunch.types with parameters of type Pair | |
---|---|
Pair<K,Iterable<V>> |
PGroupedTableType.PairIterableMapFn.map(Pair<Object,Iterable<Object>> input)
|
Uses of Pair in org.apache.crunch.types.avro |
---|
Methods in org.apache.crunch.types.avro that return types with arguments of type Pair | ||
---|---|---|
static
|
Avros.pairs(PType<V1> p1,
PType<V2> p2)
|
|
|
AvroTypeFamily.pairs(PType<V1> p1,
PType<V2> p2)
|
Uses of Pair in org.apache.crunch.types.writable |
---|
Methods in org.apache.crunch.types.writable that return types with arguments of type Pair | ||
---|---|---|
static
|
Writables.pairs(PType<V1> p1,
PType<V2> p2)
|
|
|
WritableTypeFamily.pairs(PType<V1> p1,
PType<V2> p2)
|
Uses of Pair in org.apache.crunch.util |
---|
Methods in org.apache.crunch.util that return types with arguments of type Pair | |
---|---|
Iterator<Pair<S,T>> |
Tuples.PairIterable.iterator()
|
|
|||||||||
PREV NEXT | FRAMES NO FRAMES |